Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/118305
Titel: Advancing anticancer drug discovery : leveraging metabolomics and machine learning for mode of action prediction by pattern recognition
Autor(en): Saoud, Mohamad
Grau, JanIn der Gemeinsamen Normdatei der DNB nachschlagen
Rennert, RobertIn der Gemeinsamen Normdatei der DNB nachschlagen
Müller, Thomas
Yousefi, Mohammad
Davari, Mehdi D.In der Gemeinsamen Normdatei der DNB nachschlagen
Hause, BettinaIn der Gemeinsamen Normdatei der DNB nachschlagen
Csuk, RenéIn der Gemeinsamen Normdatei der DNB nachschlagen
Rashan, Luay
Große, IvoIn der Gemeinsamen Normdatei der DNB nachschlagen
Tissier, AlainIn der Gemeinsamen Normdatei der DNB nachschlagen
Wessjohann, LudgerIn der Gemeinsamen Normdatei der DNB nachschlagen
Balcke, Gerd UlrichIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2024
Art: Artikel
Sprache: Englisch
Zusammenfassung: A bottleneck in the development of new anti-cancer drugs is the recognition of their mode of action (MoA). Metabolomics combined with machine learning allowed to predict MoAs of novel anti-proliferative drug candidates, focusing on human prostate cancer cells (PC-3). As proof of concept, 38 drugs are studied with known effects on 16 key processes of cancer metabolism, profiling low molecular weight intermediates of the central carbon and cellular energy metabolism (CCEM) by LC-MS/MS. These metabolic patterns unveiled distinct MoAs, enabling accurate MoA predictions for novel agents by machine learning. The transferability of MoA predictions based on PC-3 cell treatments is validated with two other cancer cell models, i.e., breast cancer and Ewing's sarcoma, and show that correct MoA predictions for alternative cancer cells are possible, but still at some expense of prediction quality. Furthermore, metabolic profiles of treated cells yield insights into intracellular processes, exemplified for drugs inducing different types of mitochondrial dysfunction. Specifically, it is predicted that pentacyclic triterpenes inhibit oxidative phosphorylation and affect phospholipid biosynthesis, as confirmed by respiration parameters, lipidomics, and molecular docking. Using biochemical insights from individual drug treatments, this approach offers new opportunities, including the optimization of combinatorial drug applications.
URI: https://opendata.uni-halle.de//handle/1981185920/120264
http://dx.doi.org/10.25673/118305
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Advanced science
Verlag: Wiley-VCH
Verlagsort: Weinheim
Band: 11
Heft: 47
Originalveröffentlichung: 10.1002/advs.202404085
Seitenanfang: 1
Seitenende: 14
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
advs-202404085.pdf4.43 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen