Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/118399
Titel: | Multi-valued parabolic variational inequalities and related variational-hemivariational inequalities |
Autor(en): | Carl, Siegfried![]() Le, Vy Khoi ![]() |
Erscheinungsdatum: | 2014 |
Art: | Artikel |
Sprache: | Englisch |
Zusammenfassung: | In this paper we study multi-valued parabolic variational inequalities involving quasilinearparabolic operators, and multi-valued integral terms over the underlying parabolic cylinderas well as over parts of the lateral parabolic boundary, where the multi-valued functionsinvolved are assumed to be upper semicontinuous only. Note, since lower semicontinuousmulti-valued functions allow always for a Carath ́eodory selection, this case can be consid-ered as the trivial case, and therefore will be omitted. Our main goal is threefold: First,we provide an analytical frame work and an existence theory for the problems under con-sideration. Unlike in recent publications on multi-valued parabolic variational inequalities,the closed convex setKrepresenting the constraints is not required to possess a nonemptyinterior. Second, we prove enclosure and comparison results based on a recently developedsub-supersolution method due to the authors. Third, we consider classes of relevant gen-eralized parabolic variational-hemivariational inequalities that will be shown to be specialcases of the multi-valued parabolic variational inequalities under consideration. |
URI: | https://opendata.uni-halle.de//handle/1981185920/120358 http://dx.doi.org/10.25673/118399 |
Open-Access: | ![]() |
Nutzungslizenz: | ![]() |
Journal Titel: | Advanced nonlinear studies |
Verlag: | de Gruyter |
Verlagsort: | Berlin |
Band: | 14 |
Originalveröffentlichung: | 10.1515/ans-2014-0307 |
Seitenanfang: | 631 |
Seitenende: | 659 |
Enthalten in den Sammlungen: | Open Access Publikationen der MLU |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
10.1515_ans-2014-0307.pdf | 206.7 kB | Adobe PDF | ![]() Öffnen/Anzeigen |