Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/118406
Titel: On I. Meghea and C. S. Stamin review article “Remarks on some variants of minimal point theorem and Ekeland variational principle with applications,” Demonstratio Mathematica 2022; 55: 354-379
Autor(en): Göpfert, AlfredIn der Gemeinsamen Normdatei der DNB nachschlagen
Tammer, ChristianeIn der Gemeinsamen Normdatei der DNB nachschlagen
Zălinescu, ConstantinIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2025
Art: Artikel
Sprache: Englisch
Zusammenfassung: Being informed that one of our articles is cited in the paper mentioned in the title, we downloaded it, and we were surprised to see that, practically, all the results from our paper were reproduced in Section 3 of Meghea and Stamin’s article. Having in view the title of the article, one is tempted to think that the remarks mentioned in the paper are original and there are examples given as to where and how (at least) some of the reviewed results are effectively applied. Unfortunately, a closer look shows that most of those remarks in Section 3 are, in fact, extracted from our article, and it is not shown how a specific result is used in a certain application. So, our aim in the present note is to discuss the content of Section 3 of Meghea and Stamin’s paper, emphasizing their Remark 8, in which it is asserted that the proof of Lemma 7 in our article is “full of errors.”
URI: https://opendata.uni-halle.de//handle/1981185920/120365
http://dx.doi.org/10.25673/118406
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Demonstratio mathematica
Verlag: Politechnika Warszawska
Verlagsort: Warszawa
Band: 56
Originalveröffentlichung: 10.1515/dema-2023-0102
Seitenanfang: 1
Seitenende: 6
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
10.1515_dema-2023-0102.pdf3.19 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen