Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/37925
Titel: Optimization-based tuning of a hybrid UKF state estimator with tire model adaption for an all wheel drive electric vehicle
Autor(en): Heidfeld, HannesIn der Gemeinsamen Normdatei der DNB nachschlagen
Schünemann, MartinIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2021
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-381688
Schlagwörter: Nonlinear state and parameter estimation
Electric vehicle
Vehicle dynamics
Zusammenfassung: Novel drivetrain concepts such as electric direct drives can improve vehicle dynamic control due to faster, more accurate, and more flexible generation of wheel individual propulsion and braking torques. Exact and robust estimation of vehicle state of motion in the presence of unknown disturbances, such as changes in road conditions, is crucial for realization of such control systems. This article shows the design, tuning, implementation, and test of a state estimator with individual tire model adaption for direct drive electric vehicles. The vehicle dynamics are modeled using a double-track model with an adaptive tire model. State-of-the-art sensors, an inertial measurement unit, steering angle, wheel speed, and motor current sensors are used as measurements. Due to the nonlinearity of the vehicle model, an Unscented KALMAN Filter (UKF) is used for simultaneous state and parameter estimation. To simplify the difficult task of UKF tuning, an optimization-based method using real-vehicle data is utilized. The UKF is implemented on an electronic control unit and tested with real-vehicle data in a hardware-in-the-loop simulation. High precision even in severe driving maneuvers under various road conditions is achieved. Nonlinear state and parameter estimation for all wheel drive electric vehicles using UKF and optimization-based tuning is shown to provide high precision with minimal manual tuning effort.
URI: https://opendata.uni-halle.de//handle/1981185920/38168
http://dx.doi.org/10.25673/37925
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: OVGU-Publikationsfonds 2021
Journal Titel: Energies
Verlag: MDPI
Verlagsort: Basel
Band: 14
Heft: 5
Originalveröffentlichung: 10.3390/en14051396
Seitenanfang: 1
Seitenende: 23
Enthalten in den Sammlungen:Fakultät für Maschinenbau (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Heidfeld et al._Optimization-based_2021.pdfZweitveröffentlichung4.2 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen