Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/38228
Titel: | On systems of parabolic variational inequalities with multivalued terms |
Autor(en): | Carl, Siegfried Le, Vy Khoi |
Erscheinungsdatum: | 2021 |
Art: | Artikel |
Sprache: | Englisch |
Zusammenfassung: | In this paper we present an analytical framework for the following system of multivalued parabolic variational inequalities in a cylindrical domain Q=Ω×(0,τ): For k=1,…,m, find uk∈Kk and ηk∈Lp′k(Q) such that uk(⋅,0)=0 in Ω, ηk(x,t)∈fk(x,t,u1(x,t),…,um(x,t)),⟨ukt+Akuk,vk−uk⟩+∫Qηk(vk−uk)dxdt≥0, ∀ vk∈Kk, where Kk is a closed and convex subset of Lpk(0,τ;W1,pk0(Ω)), Ak is a time-dependent quasilinear elliptic operator, and fk:Q×Rm→2R is an upper semicontinuous multivalued function with respect to s∈Rm. We provide an existence theory for the above system under certain coercivity assumptions. In the noncoercive case, we establish an appropriate sub-supersolution method that allows us to get existence and enclosure results. As an application, a multivalued parabolic obstacle system is treated. Moreover, under a lattice condition on the constraints Kk, systems of evolutionary variational-hemivariational inequalities are shown to be a subclass of the above system of multivalued parabolic variational inequalities. |
URI: | https://opendata.uni-halle.de//handle/1981185920/38471 http://dx.doi.org/10.25673/38228 |
Open-Access: | Open-Access-Publikation |
Nutzungslizenz: | (CC BY 4.0) Creative Commons Namensnennung 4.0 International |
Sponsor/Geldgeber: | Publikationsfond MLU |
Journal Titel: | Monatshefte für Mathematik |
Verlag: | Springer |
Verlagsort: | Wien [u.a.] |
Band: | 194 |
Heft: | 2 |
Originalveröffentlichung: | 10.1007/s00605-020-01477-6 |
Seitenanfang: | 227 |
Seitenende: | 260 |
Enthalten in den Sammlungen: | Open Access Publikationen der MLU |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Carl-Le2021_Article_OnSystemsOfParabolicVariationa.pdf | 507.89 kB | Adobe PDF | Öffnen/Anzeigen |