Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/79517
Titel: Visual analysis of density and velocity profiles in dense 3D granular gases
Autor(en): Puzyrev, Dmitry
Fischer, David
Harth, Kirsten
Trittel, TorstenIn der Gemeinsamen Normdatei der DNB nachschlagen
Hidalgo, Raúl Cruz
Falcon, Eric
Noirhomme, Martial
Opsomer, Eric
Vandewalle, Nicolas
Garrabos, Yves
Lecoutre, Carole
Palencia, Fabien
Stannarius, Ralf
Erscheinungsdatum: 2021
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-814713
Schlagwörter: Visual analysis
Density
Velocity profiles
Granular gases
Zusammenfassung: Granular multiparticle ensembles are of interest from fundamental statistical viewpoints as well as for the understanding of collective processes in industry and in nature. Extraction of physical data from optical observations of three-dimensional (3D) granular ensembles poses considerable problems. Particle-based tracking is possible only at low volume fractions, not in clusters. We apply shadowbased and feature-tracking methods to analyze the dynamics of granular gases in a container with vibrating side walls under microgravity. In order to validate the reliability of these optical analysis methods, we perform numerical simulations of ensembles similar to the experiment. The simulation output is graphically rendered to mimic the experimentally obtained images. We validate the output of the optical analysis methods on the basis of this ground truth information. This approach provides insight in two interconnected problems: the confirmation of the accuracy of the simulations and the test of the applicability of the visual analysis. The proposed approach can be used for further investigations of dynamical properties of such media, including the granular Leidenfrost effect, granular cooling, and gas-clustering transitions.
URI: https://opendata.uni-halle.de//handle/1981185920/81471
http://dx.doi.org/10.25673/79517
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: OVGU-Publikationsfonds 2021
Journal Titel: Scientific reports
Verlag: Macmillan Publishers Limited, part of Springer Nature
Verlagsort: [London]
Band: 11
Heft: 2021
Originalveröffentlichung: 10.1038/s41598-021-89949-z
Seitenanfang: 1
Seitenende: 12
Enthalten in den Sammlungen:Fakultät für Naturwissenschaften (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Puzyrev et al._Visual analysis_2021.pdfZweitveröffentlichung1.89 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen