Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/81337
Titel: | On the Fredholm Lagrangian Grassmannian, spectral flow and ODEs in Hilbert spaces |
Autor(en): | Waterstraat, Nils |
Erscheinungsdatum: | 2021 |
Art: | Artikel |
Sprache: | Englisch |
Zusammenfassung: | We consider homoclinic solutions for Hamiltonian systems in symplectic Hilbert spaces and generalise spectral flow formulas that were proved by Pejsachowicz and the author in finite dimensions some years ago. Roughly speaking, our main theorem relates the spectra of infinite dimensional Hamiltonian systems under homoclinic boundary conditions to intersections of their stable and unstable spaces. Our proof has some interest in its own. Firstly, we extend a celebrated theorem by Cappell, Lee and Miller about the classical Maslov index in to symplectic Hilbert spaces. Secondly, we generalise the classical index bundle for families of Fredholm operators of Atiyah and Jänich to unbounded operators for applying it to Hamiltonian systems under varying boundary conditions. Finally, we substantially make use of striking results by Abbondandolo and Majer to study Fredholm properties of infinite dimensional Hamiltonian systems. |
URI: | https://opendata.uni-halle.de//handle/1981185920/83292 http://dx.doi.org/10.25673/81337 |
Open-Access: | Open-Access-Publikation |
Nutzungslizenz: | (CC BY 4.0) Creative Commons Namensnennung 4.0 International |
Sponsor/Geldgeber: | Publikationsfonds MLU |
Journal Titel: | Journal of differential equations |
Verlag: | Elsevier |
Verlagsort: | Orlando, Fla. |
Band: | 303 |
Originalveröffentlichung: | 10.1016/j.jde.2021.09.024 |
Seitenanfang: | 667 |
Seitenende: | 700 |
Enthalten in den Sammlungen: | Open Access Publikationen der MLU |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
1-s2.0-S0022039621005829-main.pdf | 477.83 kB | Adobe PDF | Öffnen/Anzeigen |