Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/81337
Titel: On the Fredholm Lagrangian Grassmannian, spectral flow and ODEs in Hilbert spaces
Autor(en): Waterstraat, Nils
Erscheinungsdatum: 2021
Art: Artikel
Sprache: Englisch
Zusammenfassung: We consider homoclinic solutions for Hamiltonian systems in symplectic Hilbert spaces and generalise spectral flow formulas that were proved by Pejsachowicz and the author in finite dimensions some years ago. Roughly speaking, our main theorem relates the spectra of infinite dimensional Hamiltonian systems under homoclinic boundary conditions to intersections of their stable and unstable spaces. Our proof has some interest in its own. Firstly, we extend a celebrated theorem by Cappell, Lee and Miller about the classical Maslov index in to symplectic Hilbert spaces. Secondly, we generalise the classical index bundle for families of Fredholm operators of Atiyah and Jänich to unbounded operators for applying it to Hamiltonian systems under varying boundary conditions. Finally, we substantially make use of striking results by Abbondandolo and Majer to study Fredholm properties of infinite dimensional Hamiltonian systems.
URI: https://opendata.uni-halle.de//handle/1981185920/83292
http://dx.doi.org/10.25673/81337
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: Publikationsfonds MLU
Journal Titel: Journal of differential equations
Verlag: Elsevier
Verlagsort: Orlando, Fla.
Band: 303
Originalveröffentlichung: 10.1016/j.jde.2021.09.024
Seitenanfang: 667
Seitenende: 700
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-s2.0-S0022039621005829-main.pdf477.83 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen