Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/119082
Titel: Artificial intelligence-based single-cell analysis as a next-generation histologic grading approach in colorectal cancer : prognostic role and tumor biology assessment
Autor(en): Barroso, Vincenzo Mitchell
Ong, TsilungIn der Gemeinsamen Normdatei der DNB nachschlagen
Glamann, Lennert
Bauer, MarcusIn der Gemeinsamen Normdatei der DNB nachschlagen
Wickenhauser, Claudia
Zander, ThomasIn der Gemeinsamen Normdatei der DNB nachschlagen
Büttner, ReinhardIn der Gemeinsamen Normdatei der DNB nachschlagen
Quaas, AlexanderIn der Gemeinsamen Normdatei der DNB nachschlagen
Tolkach, IuriiIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2025
Art: Artikel
Sprache: Englisch
Zusammenfassung: The management of colorectal carcinoma (CRC) relies on pathological interpretation. Digital pathology approaches allow for development of new potent artificial intelligence–based prognostic parameters. The study aimed to develop an artificial intelligence–based image analysis platform allowing fully automatized, quantitative, and explainable tumor microenvironment analysis and extraction of prognostic information from hematoxylin and eosin–stained whole-slide images of CRC patients. Three well--characterized, multi-institutional patient cohorts were included (patient n = 1438, whole-slide image n > 2400). The developed image analysis platform implements quality control and established algorithms to segment tissue and detect cell types. It enabled systematic analysis of immune infiltrate, assessing its prognostic relevance, intratumoral heterogeneity, and biological concepts across multiple survival end points. Analyzing single-cell types and their combinations reveals independent, prognostic parameters, highlighting significant intratumoral heterogeneity, especially in the biopsy setting, which must be accounted for. A key morphologic concept related to tumor control by the immune system is described, resulting in a capable, independent prognostic parameter (tumor “out of control”). Our findings have direct clinical implications and can be used as a foundation for updating the existing CRC grading systems.
URI: https://opendata.uni-halle.de//handle/1981185920/121038
http://dx.doi.org/10.25673/119082
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Modern pathology
Verlag: Nature Publishing Group
Verlagsort: London
Band: 38
Heft: 7
Originalveröffentlichung: 10.1016/j.modpat.2025.100771
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-s2.0-S0893395225000675-main.pdf4.84 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen