Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/120152
Title: Predicting student achievement through peer network analysis for timely personalization via generative AI
Author(s): Pesovski, Ivica
Jolakoski, Petar
Trajkovik, Vladimir
Kubincova, Zusana
Herzog, Michael A.
Issue Date: 2025-05-30
Type: Artikel
Language: English
Publisher: Elsevier, Amsterdam
Subjects: Personalized learning
Peer nomination
Student network centrality
AI for learning
Abstract: Peer influence is a significant determinant in shaping students' academic performance, yet it is often overlooked in traditional educational strategies. The ability to analyze peer influence and collaboration is an important piece in personalizing student educational experiences.
URI: https://opendata.uni-halle.de//handle/1981185920/122111
http://dx.doi.org/10.25673/120152
Open Access: Open access publication
License: (CC BY-NC-ND 4.0) Creative Commons Attribution NonCommercial NoDerivatives 4.0(CC BY-NC-ND 4.0) Creative Commons Attribution NonCommercial NoDerivatives 4.0
Sponsor/Funder: DEAL Elsevier
Appears in Collections:Fachbereich Wirtschaft

Files in This Item:
File Description SizeFormat 
1-s2.0-S2666920X25000700-main.pdfZweitveröffentlichung1.9 MBAdobe PDFThumbnail
View/Open