Skip navigation
Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/1359
Title: Learning inhomogeneous parsimonious Markov models with application to DNA sequence analysis
Author(s): Eggeling, Ralf
Advisor(s): Große, Ivo, Prof. Dr.
Cerquides Bueno, Jesús, Prof. Dr.
Granting Institution: Martin-Luther-Universität Halle-Wittenberg
Issue Date: 2014
Extent: Online-Ressource (159 Bl. = 4,83 mb)
Type: Hochschulschrift
Exam Date: 20.11.2014
Language: English
Publisher: Universitäts- und Landesbibliothek Sachsen-Anhalt
URN: urn:nbn:de:gbv:3:4-13344
Subjects: Bioinformatik
Maschinelles Lernen
Statistisches Modell
Online-Publikation
Hochschulschrift
Abstract: Statistische Modellierung von funktionalen Oligonukleotiden wie Transkriptionsfaktorbindungsstellen ist eines der klassischen Teilgebiete der Bioinformatik. Viele der bisherige Arbeiten auf diesem Gebiet basieren auf einem vergleichsweise einfachen Modell, welches statistische Unabhängigkeit unter allen Nukleotiden innerhalb der Bindestellen annimmt. Diese Arbeit beschäftigt sich mit einer neuen Klasse von statistischen Modellen, welche die Modellierung statistischer Abhängigkeiten zwischen benachbarten Nukleotiden ermöglicht und dabei eine sparsame Parameterisierung verwendet. Zum Lernen dieser Modelle werden verschiedene Bayessche und nicht-Bayessche Lernansätze sowohl für vollständig beobachtbare Daten als auch in Gegenwart von verborgenen Variablen diskutiert. Die Methodik wird verwendet, um Eigenschaften funktionaler Transkriptionsfaktorbindestellen auf Basis von ChIP-seq Daten zu untersuchen. Die Ergebnisse zeigen, dass statistische Abhängigkeiten innerhalb von Bindestellen in der Natur weit verbreitet sind, und dass deren Modellierung die Vorhersage von Transkriptionsfaktorbindestellen verbessert.
Statistical modeling of functional oligonucleotides such as transcription factor binding sites, i.e., inferring a sequence motif with the incentive of predicting new instances, is one of the classic fields within bioinformatics. Most of the previous work in this field is based on a comparatively simple motif model that assumes statistical independence among all nucleotide. Making use of additional features is to date limited by insufficient statistical models that suffer from overfitting. In this work we propose a new class of statistical models that allows modeling complex features in the data while keeping the parameter space small in order to avoid overfitting. For inferring these models from data, we propose different Bayesian and non-Bayesian learning approaches, both for fully observable data and in the presence of latent variables. We apply models and learning algorithms to investigate the phenomenon of statistical dependencies within sequence motifs of DNA-binding proteins. Using de novo motif discovery on ChIP-seq data, we find that intra-motif dependencies are prevalent in nature and that modeling them increases prediction accuracy.
URI: https://opendata.uni-halle.de//handle/1981185920/8130
http://dx.doi.org/10.25673/1359
Open access: Open access publication
Appears in Collections:Biowissenschaften; Biologie

Files in This Item:
File Description SizeFormat 
Dissertation_Ralf_Eggeling.pdf4.94 MBAdobe PDFThumbnail
View/Open
Show full item record BibTeX EndNote


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.