Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/103458
Title: Lp–Lq-theory for a quasilinear non-isothermal Westervelt equation
Author(s): Wilke, MathiasLook up in the Integrated Authority File of the German National Library
Issue Date: 2023
Type: Article
Language: English
Abstract: We investigate a quasilinear system consisting of the Westervelt equation from nonlinear acoustics and Pennes bioheat equation, subject to Dirichlet or Neumann boundary conditions. The concept of maximal regularity of type Lp–Lq is applied to prove local and global well-posedness. Moreover, we show by a parameter trick that the solutions regularize instantaneously. Finally, we compute the equilibria of the system and investigate the long-time behaviour of solutions starting close to equilibria.
URI: https://opendata.uni-halle.de//handle/1981185920/105410
http://dx.doi.org/10.25673/103458
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Journal Title: Applied mathematics & optimization
Publisher: Springer
Publisher Place: New York, NY
Volume: 88
Issue: 1
Original Publication: 10.1007/s00245-023-09987-z
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s00245-023-09987-z.pdf381.42 kBAdobe PDFThumbnail
View/Open