Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/113165
Titel: | Complexity reduction of large-scale stochastic systems using linear quadratic Gaussian balancing |
Autor(en): | Damm, Tobias Redmann, Martin |
Erscheinungsdatum: | 2023 |
Art: | Artikel |
Sprache: | Englisch |
Zusammenfassung: | In this paper, we consider a model reduction technique for stabilizable and detectable stochastic systems. It is based on a pair of Gramians that we analyze in terms of well-posedness. Subsequently, dominant subspaces of the stochastic systems are identified exploiting these Gramians. An associated balancing related scheme is proposed that removes unimportant information from the stochastic dynamics in order to obtain a reduced system. We show that this reduced model preserves important features like stabilizability and detectability. Additionally, a comprehensive error analysis based on eigenvalues of the Gramian pair product is conducted. This provides an a-priori criterion for the reduction quality which we illustrate in numerical experiments. |
URI: | https://opendata.uni-halle.de//handle/1981185920/115120 http://dx.doi.org/10.25673/113165 |
Open-Access: | Open-Access-Publikation |
Nutzungslizenz: | (CC BY-NC-ND 4.0) Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International |
Journal Titel: | Journal of the Franklin Institute |
Verlag: | Elsevier Science |
Verlagsort: | Amsterdam [u.a.] |
Band: | 360 |
Originalveröffentlichung: | 10.1016/j.jfranklin.2023.11.018 |
Seitenanfang: | 14534 |
Seitenende: | 14552 |
Enthalten in den Sammlungen: | Open Access Publikationen der MLU |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
1-s2.0-S0016003223007305-main.pdf | 854.95 kB | Adobe PDF | Öffnen/Anzeigen |