Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/113165| Titel: | Complexity reduction of large-scale stochastic systems using linear quadratic Gaussian balancing |
| Autor(en): | Damm, Tobias Redmann, Martin |
| Erscheinungsdatum: | 2023 |
| Art: | Artikel |
| Sprache: | Englisch |
| Zusammenfassung: | In this paper, we consider a model reduction technique for stabilizable and detectable stochastic systems. It is based on a pair of Gramians that we analyze in terms of well-posedness. Subsequently, dominant subspaces of the stochastic systems are identified exploiting these Gramians. An associated balancing related scheme is proposed that removes unimportant information from the stochastic dynamics in order to obtain a reduced system. We show that this reduced model preserves important features like stabilizability and detectability. Additionally, a comprehensive error analysis based on eigenvalues of the Gramian pair product is conducted. This provides an a-priori criterion for the reduction quality which we illustrate in numerical experiments. |
| URI: | https://opendata.uni-halle.de//handle/1981185920/115120 http://dx.doi.org/10.25673/113165 |
| Open-Access: | Open-Access-Publikation |
| Nutzungslizenz: | (CC BY-NC-ND 4.0) Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International |
| Journal Titel: | Journal of the Franklin Institute |
| Verlag: | Elsevier Science |
| Verlagsort: | Amsterdam [u.a.] |
| Band: | 360 |
| Originalveröffentlichung: | 10.1016/j.jfranklin.2023.11.018 |
| Seitenanfang: | 14534 |
| Seitenende: | 14552 |
| Enthalten in den Sammlungen: | Open Access Publikationen der MLU |
Dateien zu dieser Ressource:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| 1-s2.0-S0016003223007305-main.pdf | 854.95 kB | Adobe PDF | ![]() Öffnen/Anzeigen |
Open-Access-Publikation
