Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/73767
Title: On adaptive Patankar Runge–Kutta methods
Author(s): Kopecz, Stefan
Meister, Andreas
Podhaisky, Helmut
Issue Date: 2021
Type: Article
Language: English
Abstract: We apply Patankar Runge–Kutta methods to y′ = M(y)y and focus on the case where M(y) is a graph Laplacian as the resulting scheme will preserve positivity and total mass. The second order Patankar Heun method is tested using four test problems (stiff and non-stiff) cast into this form. The local error is estimated and the step size is chosen adaptively. Concerning accuracy and efficiency, the results are comparable to those obtained with a traditional L-stable, second order Rosenbrock method.
URI: https://opendata.uni-halle.de//handle/1981185920/75719
http://dx.doi.org/10.25673/73767
Open Access: Open access publication
License: (CC BY-NC 4.0) Creative Commons Attribution NonCommercial 4.0(CC BY-NC 4.0) Creative Commons Attribution NonCommercial 4.0
Sponsor/Funder: Publikationsfonds MLU
Journal Title: Proceedings in applied mathematics and mechanics
Publisher: Wiley-VCH
Publisher Place: Weinheim [u.a.]
Volume: 21
Issue: 1
Original Publication: 10.1002/pamm.202100235
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
Proc Appl Math Mech - 2021 - Kopecz - On Adaptive Patankar Runge Kutta methods.pdf205.67 kBAdobe PDFThumbnail
View/Open