Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/79641
Title: | The equivariant spectral flow and bifurcation of periodic solutions of Hamiltonian systems |
Author(s): | Izydorek, Marek Janczewska, Joanna Waterstraat, Nils |
Issue Date: | 2021 |
Type: | Article |
Language: | English |
Abstract: | We define a spectral flow for paths of selfadjoint Fredholm operators that are equivariant under the orthogonal action of a compact Lie group as an element of the representation ring of the latter. This -equivariant spectral flow shares all common properties of the integer valued classical spectral flow, and it can be non-trivial even if the classical spectral flow vanishes. Our main theorem uses the -equivariant spectral flow to study bifurcation of periodic solutions for autonomous Hamiltonian systems with symmetries. |
URI: | https://opendata.uni-halle.de//handle/1981185920/81595 http://dx.doi.org/10.25673/79641 |
Open Access: | Open access publication |
License: | (CC BY 4.0) Creative Commons Attribution 4.0 |
Sponsor/Funder: | Publikationsfonds MLU |
Journal Title: | Nonlinear analysis |
Publisher: | Elsevier, Pergamon Press |
Publisher Place: | Amsterdam [u.a.] |
Volume: | 211 |
Original Publication: | 10.1016/j.na.2021.112475 |
Appears in Collections: | Open Access Publikationen der MLU |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S0362546X21001486-main.pdf | 852.77 kB | Adobe PDF | View/Open |