Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/79641
Title: The equivariant spectral flow and bifurcation of periodic solutions of Hamiltonian systems
Author(s): Izydorek, Marek
Janczewska, Joanna
Waterstraat, Nils
Issue Date: 2021
Type: Article
Language: English
Abstract: We define a spectral flow for paths of selfadjoint Fredholm operators that are equivariant under the orthogonal action of a compact Lie group as an element of the representation ring of the latter. This -equivariant spectral flow shares all common properties of the integer valued classical spectral flow, and it can be non-trivial even if the classical spectral flow vanishes. Our main theorem uses the -equivariant spectral flow to study bifurcation of periodic solutions for autonomous Hamiltonian systems with symmetries.
URI: https://opendata.uni-halle.de//handle/1981185920/81595
http://dx.doi.org/10.25673/79641
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Sponsor/Funder: Publikationsfonds MLU
Journal Title: Nonlinear analysis
Publisher: Elsevier, Pergamon Press
Publisher Place: Amsterdam [u.a.]
Volume: 211
Original Publication: 10.1016/j.na.2021.112475
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
1-s2.0-S0362546X21001486-main.pdf852.77 kBAdobe PDFThumbnail
View/Open