Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/85771
Titel: An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling
Autor(en): Hahn, TimIn der Gemeinsamen Normdatei der DNB nachschlagen
Ernsting, Jan
Winter, Nils R.
Holstein, Vincent
Leenings, Ramona
Beisemann, Marie
Fisch, Lukas
Sarink, Kelvin
Emden, Daniel
Opel, Nils
Redlich, RonnyIn der Gemeinsamen Normdatei der DNB nachschlagen
Repple, Jonathan
Grotegerd, Dominik
Meinert, Susanne
Hirsch, Jochen G.
Niendorf, Thoralf
Endemann, Beate
Bamberg, Fabian
Kröncke, Thomas
Bülow, Robin
Völzke, Henry
von Stackelberg, Oyunbileg
Sowade, Ramona Felizitas
Umutlu, Lale
Schmidt, Börge
Caspers, Svenja
Kugel, Harald
Kircher, Tilo
Risse, Benjamin
Gaser, Christian
Cole, James H.
Dannlowski, Udo
Berger, Klaus
Erscheinungsdatum: 2022
Art: Artikel
Sprache: Englisch
Zusammenfassung: The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, thereby confounding results with training data density and variability. Also, existing models are commonly based on homogeneous training sets, often not independently validated, and cannot be shared because of data protection issues. Here, we introduce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression (MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achieving lower error rates compared with existing models. In two examples, we demonstrate that it prevents spurious associations and increases power to detect deviant brain aging. We make the pretrained model and code publicly available.
URI: https://opendata.uni-halle.de//handle/1981185920/87723
http://dx.doi.org/10.25673/85771
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-NC 4.0) Creative Commons Namensnennung - Nicht kommerziell 4.0 International(CC BY-NC 4.0) Creative Commons Namensnennung - Nicht kommerziell 4.0 International
Sponsor/Geldgeber: Publikationsfonds MLU
Journal Titel: Science advances
Verlag: Assoc.
Verlagsort: Washington, DC [u.a.]
Band: 8
Heft: 1
Originalveröffentlichung: 10.1126/sciadv.abg9471
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
sciadv.abg9471.pdf307.23 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen